
Solve each equation. Write a reason for every step.

1.
$$4x = 12x + 32$$

$$2. 28 + 12x = 8x - 4$$

3.
$$60x + 153 = 9x + 51$$

4.
$$-4x + 10 = -5x + 18$$

6.
$$-x - 2(9 - 8x) = 12$$

7.
$$\frac{6(x-6) = x(16-7)}{}$$

8.
$$\frac{\frac{1}{4}x + 10 = 2}{}$$

2-6 **Skills Practice**

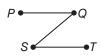
Algebraic Proof

State the property that justifies each statement.

- **1.** If $80 = m \angle A$, then $m \angle A = 80$.
- **2.** If RS = TU and TU = YP, then RS = YP.
- **3.** If 7x = 28, then x = 4.
- **4.** If VR + TY = EN + TY, then VR = EN.
- **5.** If $m \angle 1 = 30$ and $m \angle 1 = m \angle 2$, then $m \angle 2 = 30$.

Complete the following proof.

6. Given: 8x - 5 = 2x + 1


Prove: x = 1

Proof:

Statements	Reasons
$\mathbf{a.}8x - 5 = 2x + 1$	a
b. $8x - 5 - 2x = 2x + 1 - 2x$	b
c	c. Substitution Property
d	_ d.Addition Property
e. $6x = 6$	e
f. $\frac{6x}{6} = \frac{6}{6}$	f
g	_ g

Write a two-column proof to verify the conjecture.

7. If
$$\overline{PQ} \cong \overline{QS}$$
 and $\overline{QS} \cong \overline{ST}$ then $PQ = ST$.

Study Guide and Intervention 2-6

Algebraic Proof

Algebraic Proof A list of algebraic steps to solve problems where each step is justified is called an **algebraic proof**, The table shows properties you have studied in algebra.

The following properties are true for any real numbers a, b, and c.

<u> </u>	<u>*</u>
Addition Property of Equality	If $a = b$, then $a + c = b + c$.
Subtraction Property of Equality	If $a = b$, the $a - c = b - c$.
Multiplication Property of Equality	If $a = b$, then $a \cdot c = b \cdot c$.
Division Property of Equality	If $a = b$ and $c \neq 0$, then, $\frac{a}{c} = \frac{b}{c}$.
Reflexive Property of Equality	a = a
Symmetric Property of Equality	If $a = b$ and $b = a$.
Transitive Property of Equality	If $a = b$ and $b = c$, then $a = c$.
Substitution Property of Equality	If $a = b$, then a may be replaced by b in any equation or expression.
Distributive Property	a(b+c) = ab + ac

Solve 6x + 2(x - 1) = 30. Write a justification for each step.

Algebraic Steps

Example

Properties

$$6x + 2(x - 1) = 30$$
 Original equation or Given $6x + 2x - 2 = 30$ Distributive Property $8x - 2 = 30$ Substitution Property of Equality $8x - 2 + 2 = 30 + 2$ Addition Property of Equality $8x = 32$ Substitution Property of Equality $\frac{8x}{8} = \frac{32}{8}$ Division Property of Equality $x = 4$ Substitution Property of Equality

Exercises

Complete each proof.

1. Given:
$$\frac{4x+6}{2} = 9$$
 Prove: $x = 3$

Proof:	
Statements	Reasons

a.
$$\frac{4x+6}{2} = 9$$

b. $_{-}(\frac{4x+6}{2}) = 2(9)$

c.
$$4x + 6 = 18$$

d.
$$4x + 6 - 6 = 18 - 6$$

e.
$$4x =$$

f.
$$\frac{4x}{4} =$$

2. Given:
$$4x + 8 = x + 2$$

Prove:
$$x = -2$$

a. 4x + 8 = x + 2

b.
$$4x + 8 - x =$$

$$x + 2 - x$$

c.
$$3x + 8 = 2$$

a. ____

b. Mult. Prop.

d.

f.
$$\frac{3x}{3} = \frac{-6}{3}$$

f.
$$\frac{3x}{3} = \frac{-6}{3}$$

$$\mathbf{g}$$
. Substitution