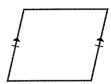
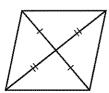
Name_	
	Geometry

Proving that a Quadrilateral is a Parallelogram

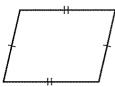
Any of the methods may be used to prove that a quadrilateral is a parallelogram.

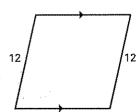

- 1) If both pairs of opposite sides are parallel, then the quadrilateral is a parallelogram.
- 2) If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.
- 3) If one pair of opposite sides of a quadrilateral are congruent and parallel, then the quadrilateral is a parallelogram.
- 4) If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.
- 5) If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

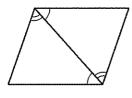
Practice A

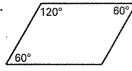

For use with pages 338-346

Are you given enough information to determine whether the quadrilateral is a parallelogram? Explain.


1.


2.

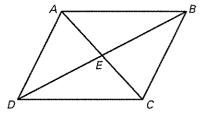

3.


4.

5.

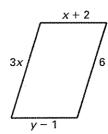
6.

What additional information is needed in order to prove that quadrilateral *ABCD* is a parallelogram?

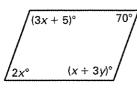

7.
$$\overline{AB} \parallel \overline{DC}$$

8.
$$\overline{AB} \cong \overline{DC}$$

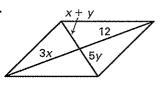
9.
$$\angle DCA \cong \angle BAC$$


10.
$$\overline{DE} \cong \overline{EB}$$

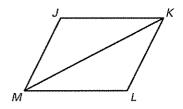
11.
$$m \angle CDA + m \angle DAB = 180^{\circ}$$



What value of x and y will make the polygon a parallelogram?


12.

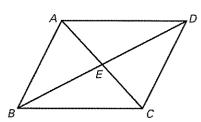
13.


14.

Write a two-column or a paragraph proof using each method.

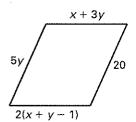
15. Given: $\triangle MJK \cong \triangle KLM$

Prove: *MJKL* is a parallelogram.

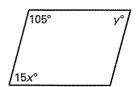


a. By Theorem 6.6: If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

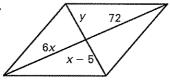
b. By Theorem 6.10: If one pair of opposite sides of a quadrilateral are congruent and parallel, then the quadrilateral is a parallelogram.


Decide whether each piece of given information alone is sufficient to prove that quadrilateral *ABCD* is a parallelogram.

- **1.** E is the midpoint of \overline{AC} and \overline{BD} .
- 2. $m \angle ABC + m \angle BCD = 180^{\circ}$
- 3. $\overline{AB} \parallel \overline{DC}$ and $\overline{BC} \cong \overline{DA}$
- **4.** $\angle ABC \cong \angle ADC$, and $\angle BAD \cong \angle BCD$
- **5.** $\triangle ABE \cong \triangle DCE$
- **6.** $\triangle ABE \cong \triangle CDE$

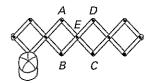


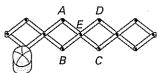
What value of x and y will make the polygon a parallelogram?


7.

8

9.

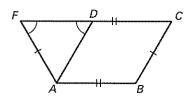

Prove that the points represent the vertices of a parallelogram. Use a different method for each exercise.


10.
$$A(2, -1)$$
, $B(1, 3)$, $C(6, 5)$, and $D(7, 1)$

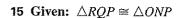
11.
$$A(-2, -4)$$
, $B(1, 2)$, $C(2, 10)$, and $D(-1, 4)$

Use the diagram of the adjustable hat rack at the right to answer the following.

- 12. Draw the quadrilateral ABCD.
- **13.** If the hat rack were expanded outward, would *ABCD* still be a parallelogram? Explain.

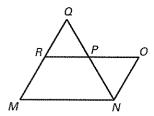


Write a two-column or a paragraph proof.


14. Given:
$$\overline{AB} \cong \overline{CD}$$
, $\overline{BC} \cong \overline{AF}$

$$\angle AFD \cong \angle ADF$$

Prove: ABCD is a parallelogram.



Copyright © McDougal Littell Inc. All rights reserved.

R is the midpoint of \overline{MQ} .

Prove: MRON is a parallelogram.

Geometry
Chapter 6 Resource Book

Practice C

For use with pages 338-346

Decide whether you are given enough information to determine that the quadrilateral is a parallelogram.

- 1. Opposite sides are parallel.
- **3.** Two pairs of consecutive sides are congruent.
- 5. Diagonals are congruent.
- 7. All four sides are congruent.

- 2. Opposite sides are congruent.
- **4.** Two pairs of consecutive angles are congruent.
- 6. Diagonals bisect each other.
- 8. Consecutive angles are supplementary.

Prove that the points represent the vertices of a parallelogram. Use a different method for each exercise.

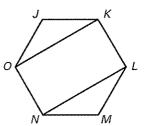
9.
$$A(-4, 7)$$
, $B(3, 0)$, $C(2, -5)$, and $D(-5, 2)$

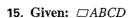
10.
$$A(-2, 8)$$
, $B(2, 7)$, $C(5, 1)$, and $D(1, 2)$

Find all the possible coordinates for the fourth vertex of a parallelogram with the given vertices.

11.
$$(4, -1), (-4, 1), \text{ and } (0, 8)$$

12.
$$(3, -4), (-2, -1), \text{ and } (1, 2)$$

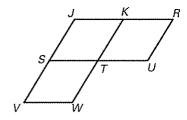

Write a two-column or a paragraph proof.

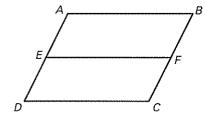

13. Given: Regular hexagon JKLMNO

Prove: OKLN is a parallelogram.

14. Given: VWKJ and SJRU are parallelograms.

Prove: $\angle W \cong \angle U$



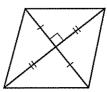


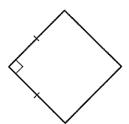
E is the midpoint of AD.

F is the midpoint of BC.

Prove: Quadrilateral *ABFE* is a parallelogram.

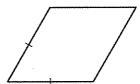
Name		
Honors	Geometry	

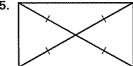

Pop Quiz Fill in the chart with the appropriate properties. QUADRILATERAL PARALLELOGRAM RHOMBUS RECTANGLE SQUARE

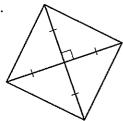

Practice A

For use with pages 347-355

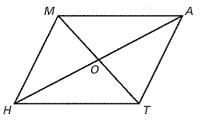
Each figure is a parallelogram. Identify the special type and explain your reasoning.




2.

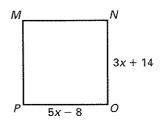

3.

6.

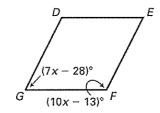

Match the properties of a quadrilateral with all of the types of quadrilateral which have that property.

- 7. The diagonals are congruent.
- 8. Both pairs of opposite sides are congruent.
- 9. Both pairs of opposite sides are parallel.
- 10. All angles are congruent.
- 11. All sides are congruent.
- 12. Diagonals bisect the angles.

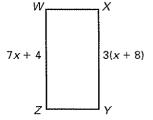
- A. Parallelogram
- B. Rectangle
- C. Rhombus
- D. Square


MATH is a parallelogram with diagonals intersecting at O. Identify the type depending upon the given conditions.

- 13. $\overline{MT} \perp \overline{AH}$
- **15.** $\overline{MA} \perp \overline{AT}, \overline{AM} \cong \overline{MH}$
- 14. $\overline{MT} \cong \overline{AH}$
- **16**. $\overline{MO} \cong \overline{OT}$, $\overline{AO} \cong \overline{OH}$



Find the value of x.


17. MNOP is a square.

18. DEFG is a rhombus.

19. WXYZ is a rectangle.

Geometry Chapter 6 Resource Book Copyright © McDougal Littell Inc. All rights reserved.

Practice B

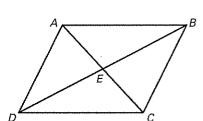
For use with pages 347-355

Decide whether the statement is sometimes, always, or never true.

- 1. A rhombus is equilateral.
- 2. The diagonals of a rectangle are perpendicular.
- 3. The opposite angles of a rhombus are supplementary.
- 4. A square is a rectangle.
- 5. The diagonals of a rectangle bisect each other.
- 6. The consecutive angles of a square are supplementary.

Quadrilateral ABCD is a rhombus.

7. If
$$m \angle BAE = 32^{\circ}$$
, find $m \angle ECD$.


8. If
$$m \angle EDC = 43^{\circ}$$
, find $m \angle CBA$.

9. If
$$m \angle EAB = 57^{\circ}$$
, find $m \angle ADC$.

10. If
$$m \angle BEC = 3x - 15^{\circ}$$
, solve for x.

11. If
$$m \angle ADE = 5x - 8^{\circ}$$
 and $m \angle CBE = 3x + 24$, solve for x.

12. If
$$m \angle BAD = 4x + 14^{\circ}$$
 and $m \angle ABC = 2x + 10^{\circ}$, solve for x.

It is given that PQRS is a parallelogram. Decide whether it is a rectangle, a rhombus, a square, or none of the above. Justify your answer using theorems about quadrilaterals.

13.
$$P(-2, 3)$$

$$Q(-2, -4)$$

$$Q(-2, -4)$$

 $R(2, -4)$

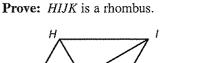
14.
$$P(7, -1)$$

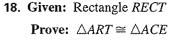
$$R(-1, -1)$$

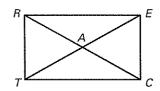
$$S(3, -8)$$

15.
$$P(-4,0)$$

$$S(-1, -3)$$


$$Q(-2,4)$$


$$R(-5, 1)$$


$$S(-2, -2)$$

Write a two-column or a paragraph proof.

$$\triangle HOI \cong \triangle JOI$$

Practice C

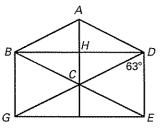
For use with pages 347-355

In the diagram shown, *BDEG* is a rectangle and *ABCD* is a rhombus. Find the measure of the indicated angle.

1. ∠*GDB*

2. ∠*ABC*

3. ∠*DAB*


4. ∠*BCG*

5. ∠*GCE*

6. ∠*DEG*

7. ∠*AHB* ·

8. ∠*DGB*

Decide whether the statement is *true* or *false*. Decide whether the converse is *true* or *false*. If both statements are *true*, write a biconditional statement.

- 9. If a quadrilateral is a rectangle, then it is a parallelogram.
- 10. If a quadrilateral is a parallelogram, then it is a rhombus.
- 11. If a quadrilateral is a square, then it is a rhombus.
- 12. If a quadrilateral is a rectangle, then it is a rhombus.
- 13. If a rhombus is a square, then it is a rectangle.

Find the length or angle measure.

- **14.** WXYZ is a square.
- **15**. *WXYZ* is a rhombus.
 - $m \angle X = 24(10 x)^{\circ}$

$$WX = 1 - 10x$$
$$YZ = 14 + 3x$$

$$m \angle Z = 6(x + 15)^{\circ}$$

$$XY = \underline{?}$$

$$m \angle Y = ?^{\circ}$$

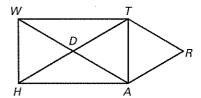
16. WXYZ is a rectangle.

Perimeter of
$$\triangle XYZ = 24$$

$$XY + YZ = 5x - 1$$

$$XZ = 13 - x$$

$$WY = ?$$

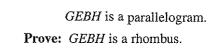

18. Given: $\triangle GEC \cong \triangle GHX$

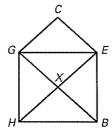
Write a two-column or a paragraph proof.

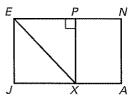
17. Given: WHAT is a parallelogram.

DART is a rhombus.

Prove: WHAT is a rectangle.




19. Given: JANE is a parallelogram.

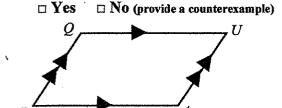

JXPE is a parallelogram.

 $XP \perp EN$

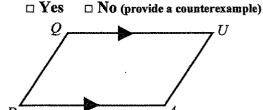
Prove: JANE is a rectangle.

Geometry

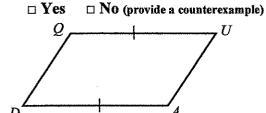
Chapter 6 Resource Book

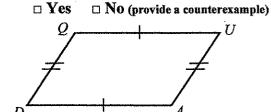

Copyright © McDougal Littell Inc. All rights reserved.

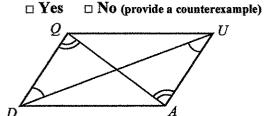
Tests for Parallelograms


A Parallelogram is defined as a quadrilateral with both pairs of opposite sides parallel.

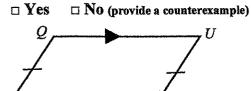
Does the given information make the *QUADRILATERAL* a *PARALLELOGRAM*? If the information does not *guarantee* a parallelogram, sketch a counterexample that demonstrates another possible shape having the same characteristics.


1) Will this always form a parallelogram?

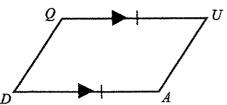

2) Will this always form a parallelogram?


3) Will this always form a parallelogram?

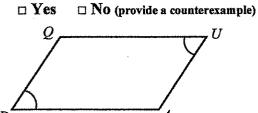
4) Will this always form a parallelogram?


5) Will this always form a parallelogram?

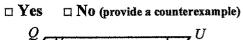
6) Will this always form a parallelogram?

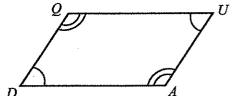


7) Will this always form a parallelogram?

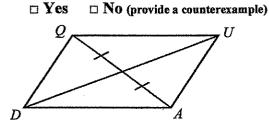


8) Will this always form a parallelogram?

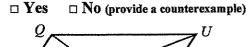

□ Yes □ No (provide a counterexample)

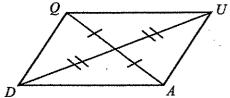


9) Will this always form a parallelogram?

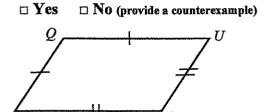


10) Will this always form a parallelogram?

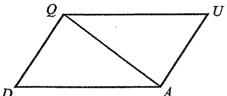




11) Will this always form a parallelogram?



12) Will this always form a parallelogram?



13) Will this always form a parallelogram?

14) Given: QUAD is a parallelogram

Prove: $\triangle QDA \cong \triangle AUQ$

Tests for Parallelograms

We can test if a quadrilateral is a parallelogram if it possesses certain properties.

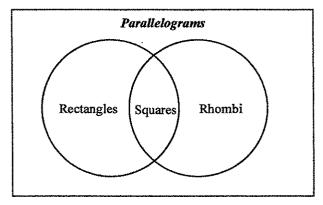
Compi	ete ine jouowing:
A quad	lrilateral is a parallelogram if
1)	Both pairs of opposite sides are
2)	Both pairs of opposite sides are
3)	Both pairs of opposite angles are
4)	One pair of opposite sides is both and
5)	Consecutive angles are
6)	The diagonalseach other.
7)	A diagonal of a parallelogram will always divide the parallelogram into
	two
	tests describe properties of <i>ALL</i> parallelograms. In certain parallelograms, we find even are specific properties these parallelograms are called <i>Special Parallelograms</i> .
SPECIAL	PARALLELOGRAMS A Rectangle, Rhombus, and Square have all the properties described above, but other properties make them special.
What i	is the name of the parallelogram where
1) All angles are right angles:
2	2) All sides are congruent:
3	b) Diagonals are congruent:
4	Diagonals are perpendicular:
4	i) Diagonals hiseat both pairs of apposite angles:

Geometry	,
----------	---

NAME:

WORKSHEET: Special Parallelograms

PERIOD: _____ DATE: ____


Special Parallelograms

A Rhombus is a parallelogram with...

A Rectangle is a parallelogram with...

A Square is a parallelogram with...

Use the Venn Diagram below to answer the questions that follow.

TRUE or FALSE.

- 1) ____ All rectangles are squares.
- 2) ____ A rectangle can be a square.
- 3) ____ All squares are rectangles.
- 4) ____ A rhombus can be a square.
- 5) ____ All rhombi are squares.
- 6) ____ Every square is also a rhombus.
- 7) ____ Some rectangles are rhombi.
- 8) ____ All rectangles are rhombi.

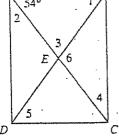
Complete the following.

- 9) A rhombus can be a rectangle if it is _____.
- 10) A rectangle can be a rhombus if it is _____.

PRACTICE

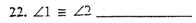
Properties of Rectangles and Squares

Complete the table. Place a check mark under the name of each figure


Parallelogram	Rhombus	Rectangle	Square
	_		
		,	
	'		
		ļ	
metrica	1	<u>, </u>	

ABCD is a rectangle, with AC = 18. Find each length or angle measure.

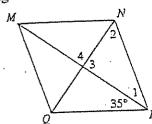
- 11. m∠BCD _____
- 12. *m*∠1 _____
- 13. *m*∠2 _____


- 14. *m*∠3 _____
- 15. *m*∠4 _____
- 16. *m*∠5 _____

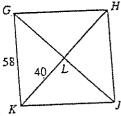
- 17. *m*∠6 _____
- 18. AE _____
- 19. DB

GHKL is a rectangle that is not a square. Answer true or false.

- 20. GHKL and its diagonals form four congruent triangles.
- 21. GHKL and its diagonals form four isosceles triangles.


- 23. △GHL ≡ △KLH __-
- 24. GK is a line of symmetry.
- 25. $\triangle GML \equiv \triangle HMK$
- 26. $\overline{GK} \equiv \overline{HL}$

PRACTICE


Properties of Rhombuses

True or false?

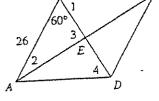
- 1. Every rhombus is a parallelogram.
- 2. The diagonals of a rhombus bisect each other.
- 3. The diagonals of a rhombus are congruent.
- 4. The diagonals of a rhombus are perpendicular to each other.
- 5. The consecutive angles of a rhombus are congruent.
- 6. The consecutive sides of a rhombus are congruent.
- 7. A rhombus and one of its diagonals form two isosceles triangles.
- 8. MNPQ is a rhombus. Find the measure of each angle.

9. GHJK is a rhombus, with GJ = 42. Find the length of each segment.

m∠NMQ _____ *m*∠1 _____

m∠2 _____ *m∠MNP* _____

LH ____


m_4_____

10. ABCD is a rhombus. Find each angle measure or segment length.

m∠1 _____ m∠DAB _____ m/2 _____ m/3 ____

m∠4 _____ AD ____

BD _____ ED ____

11. EFGH is a rhombus, with $m\angle EFG = (3x - 15)^{\circ}$ and

 $m\angle EHF = (2x - 30)^{\circ}$. Find x and $m\angle EFG$.

Honors - Rectangles &

Name____

Systems Practice

Using Rectangle ABCD whose diagonals intersect at E, answer the following. Each question is independent (i.e. the information does not carry through)

1.
$$m\angle BCD = 18x - 3y$$

 $AB = x - 2$
 $CD = 2y + 14$

2.
$$m\angle ABD = 3x - 1$$

 $m\angle EDC = 2y + 6$
 $m\angle ADB = 4x + y$
 $m\angle DBC = x + 8$

3.
$$AC = 18$$

 $BE = x + y$
 $BD = 3x - 2y$

Rhombus & Factoring Practice

1) Given Rhombus ABCD whose diagonals intersect at E.

$$AB = 7x^2 + 28$$

$$BC = x^2 + 31x$$

$$BC = x^2 + 31x$$

$$m\angle BCA = 2w^2 - 18w$$

$$m\angle DBA = 3w + 63$$

$$BE = y^2 + 3y$$

$$DB = 17y - 15$$

2) Solve the following systems:

$$3x^2 - 4x - 20$$

$$6x^2 - 11x - 12$$

$$8x^2 - 26x + 15$$

$$2x^2 + x - 36$$

3) Solve the following questions given Rhombus USCG whose diagonals intersect at A.

a. If
$$m\angle USA = 44^{\circ}$$
 find $m\angle CGA$

b. If
$$m\angle GUS = 102^{\circ}$$
 find $m\angle ACG$

d. If
$$UC = 10$$
 find AC

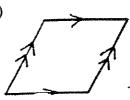
e. If
$$m\angle SGU = 12^{\circ}$$
 find $m\angle SCG$

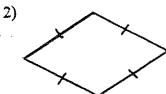
f. If
$$m\angle USC = 81^{\circ}$$
 find $m\angle UAS$

2-5 Parallelograms

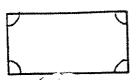
Terms to know:

parallelogram rhombus

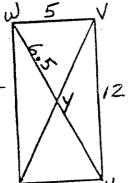

rectangle square


Things to know:

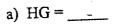
The 3 properties of parallelograms

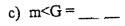

Give the most specific name for each quadrilateral. (parallelogram, rectangle, rhombus, or square)

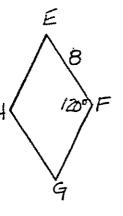
3)

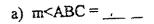

- 4) equiangular parallelogram
- 5) regular quadrilateral

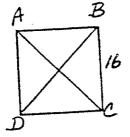
Tell if the statement is TRUE or FALSE.

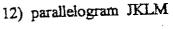

- 6) Every square is a rectangle.
 - 7) A rhombus has 4 congruent sides.____
 - 8) Every rectangle is a square.____
 - 9) All angles of a rectangle are congruent._

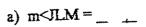

Find the length or angle measure.

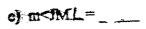

10) rectangle UVWX

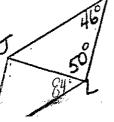

11) rhombus EFGH



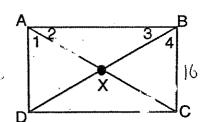





13) square ABCD



Properties of Rectangles, Rhombuses, and Squares

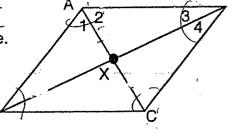

- *** Rectangles all properties of parallelograms DIUS COMPUNS CONTRACTOR CONTRACTOR diagonals are congruent all angles measure 90
- Rhombuses all properties of parallelograms plus
 - -all sides are congruent
 - —diagonals are perpendicular
 - -diagonals bisect opposite angles

Squares

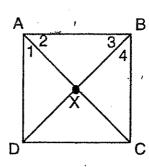
- all properties of parallelograms
- all properties of rectangles:
- all properties of rhombuses.

Use the properties to find measures of segments and angles in the diagrams.

1. ABCD is a rectangle. If AB = 24, BC = 10, and $<1 = 50^{\circ}$, find the following:


- a. CD = _
- ____ d. BD = ____ g. <DAB = ___

- b. AD = ___ e. AX = __ h. <3 = ___ c. AC = _ f. BX = __ i. <AXB = ___


- 2. ABCD is a rhombus. If AB = 6, XC = 3, and $\langle DAB = 120^{\circ}$, find the following:
- a. BC = ____ d. <AXB = ___
- g. $<3 = _{}$
- b. <ADC = ___ e. <1 = __ h. <4 = ___ c. <DCB = __ f. <2 = __ i. AX = __ __

j. ∆ABC is an ____

triangle.

3. ABCD is a square. If AB = 16 and AC = $16\sqrt{2}$, find the following:

- a. BC =
- b. BD = _
- c. AD =
- $d. < 1 = _{-}$
- e. <2 =
- f. <AXB = __
- g. <BXC =
- h. <4 = ___

QUADRILATERAL

PARALLELOGRAM

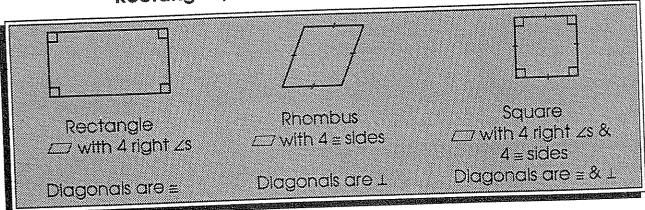
- 1-Opposite sides are congruent
- 2-Opposite angles are congruent
- 3-Opposite sides are parallel
- 4-Diagonals bisect each other
- 5-Consecutive angles are supplementary

RECTANGLE

Diagonals are congruent Equiangular

RHOMBUS

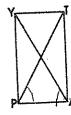
Equilateral


Diagonals bisect opposite angle Diagonals are perpendicular

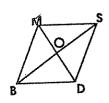
SQUARE

Quadrilaterals

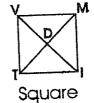
Rectangles, Rhombuses and Squares



True or False.


大学者と会議者というと、

- 1. A rhombus is a parallelogram with four congruent sides.
- 2. A rectangle is a parallelogram with four right angles.
- 3. A square is a rectangle and a rhombus.
- 4. A rhombus is always a square.
- 5. Every parallelogram is a regular quadrilateral.
- 6. In a rectangle, the diagonals are perpendicular.


Rectangle

- 7. Which angles are congruent to ∠PAT?
- 8. Which segment is congruent to $\overline{Y1}$?
- 9. Which segment is congruent to PT?
- 10. Which segments are congruent to \$\overline{SD}\$?
- 11. Which segment is congruent to $\overline{\text{MO}}$?
- 12. What is the measure of ∠BOD?

Rhombus

- 13. Which segments are congruent to $\overline{\text{TV}}$?
- 14. Which angles are congruent to ∠TIM?
- 15. Which segment is congruent to TM?

Study Guide

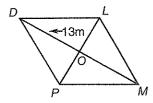
Rectangles, Rhombi, and Squares

A **rectangle** is a quadrilateral with four right angles. A **rhombus** is a quadrilateral with four congruent sides. A **square** is a quadrilateral with four right angles and four congruent sides. A square is both a rectangle and a rhombus. Rectangles, rhombi, and squares are all examples of parallelograms.

Rectangles	Rhombi
 Opposite sides are congruent. Opposite angles are congruent. Consecutive angles are supplementary. Diagonals bisect each other. All four angles are right angles. Diagonals are congruent. 	Diagonals are perpendicular. Each diagonal bisects a pair of opposite angles.

Determine whether each statement is always, sometimes, or never true.

- 1. The diagonals of a rectangle are perpendicular.
- 2. Consecutive sides of a rhombus are congruent.
- 3. A rectangle has at least one right angle.
- 4. The diagonals of a parallelogram are congruent.
- 5. A diagonal of a square bisects opposite angles.

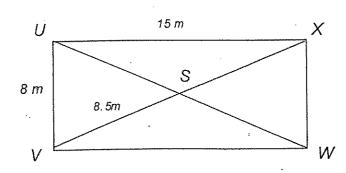

Use rhombus DLMP to determine whether each statement is true or false.

6.
$$OM = 13$$

7.
$$PL = 26$$

$$\mathbf{8.}\,\widehat{M}\!\!\!\!D\cong\overline{PL}$$

9.
$$m \angle DLO = m \angle LDO$$

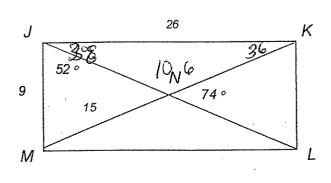

10.
$$\angle LDP \cong \angle LMP$$

11.
$$m \angle DPM = m \angle PML$$

All the state of t	
Name	*
Basic Geometry	
Rec	tangles
A Rectangle is a parallelogram with 4 r	right angles.
A rectangle is an pa	rallelogram.
What are the five properties of a par	allelogram?
1)	
Why is it special? It has all of the properties of a paral Its diagonals are	lelogram PLUS
1) Rectangle YPAT	Which angles are congruent to $\angle PAT$? Which segment is congruent to \overline{YT} ?

Which segment is congruent to \overline{PT} ?

2) Rectangle UVWX


Find:

$$VW = \frac{1}{2}$$

$$XW = 0$$

$$m\angle XWV =$$

3)Rectangle JKLM

Find:

$$ML = \underline{\hspace{1cm}}$$

$$JL = \frac{?}{2}$$

$$m \angle JML = \frac{1}{2}$$

$$m \angle JNK =$$

$$m\angle KJN = ($$

$$m \angle JKN = \underline{}$$

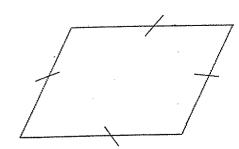
True or False

A rectangle is a parallelogram that always has four right angles.____

A rectangle is always a parallelogram._____

A rectangle is a parallelogram that always has four congruent sides.

Every parallelogram is a rectangle. _____


In a rectangle the diagonals are congruent.

In a rectangle the diagonals bisect each other._____

In a rectangle opposite sides are not congruent.

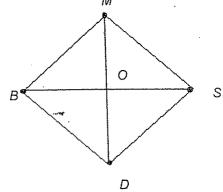
Name		 	
Basic	Geometry		

Rhombuses

A rhombus is a parallelogram with 4 congruent sides.

A rhombus is an _____ parallelogram.

What are the five properties of a parallelogram?

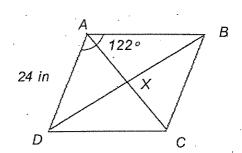

- 1) ______
- 3) .
- 4)
- 5) ______

Why is it special?

It has all of the properties of a parallelogram PLUS ...

- Its diagonals are _____
- Each diagonal ______ pair of opposite angles.

1)	Rhombus MSDB
	M



Which segments are congruent to \overline{SD}

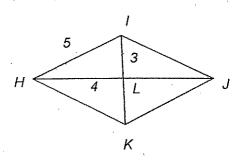
Which segment is congruent to \overline{MO} ?

What is $m \angle BOD$?

2) Rhombus ABCD

$$AB = \underline{}$$

$$BC = \underline{}$$


$$m\angle ADC =$$

$$DC = \frac{1}{2}$$

$$m\angle ABC =$$

$$m\angle ACD =$$

3)Rhombus HIJK

Find:

$$IJ =$$

$$KJ =$$

$$LJ =$$

$$HJ = \frac{1}{2}$$

$$m\angle ILH = 1$$

$$m\angle KLH =$$

$$m\angle HLJ =$$

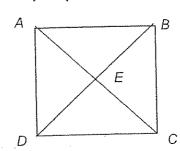
True or False

A rhombus is a parallelogram that always has four congruent sides.____

A rhombus is always a parallelogram.

A rhombus a parallelogram that always has four congruent angles._____

Every parallelogram is a rhombus.


In a rhombus the diagonals are congruent.

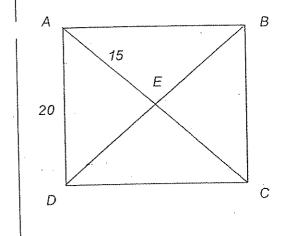
In a rhombus the diagonals bisect each other._____

In a rhombus opposite angles are not congruent._____

Name
Basic Geometry
Squares
A square is a parallelogram with 4 congruent sides and 4 congruent angles.
A square is an and an parallelogram.
A square is a quadrilateral.
What are the five properties of a parallelogram? 1) OPP MAN QUE 2) OPP SIME QUE 3) OPP SIME QUE 4) NOTE OF CONTROL PROPERTY CAN OFFICE CACH OFFICE 5) MARKET MAN AUTOP
Why is it special?
It has all of the properties of a parallelogram PLUS
• Its diagonals are
Its diagonals are
• Each diagonal a pair of opposite angles.

1) Square ABCD

Which segments are congruent to \overline{AB}


Which segment is congruent to \overline{BD} ?

What segments are congruent to

What is $m \angle BEC$?

What is *m∠BCD*?_____

2) Square ABCD

Find:

$$AB = \underline{\qquad} m \angle EBC = \underline{\qquad}$$

$$BC = \underline{\qquad} m \angle EAD = \underline{\qquad}$$

$$AC =$$

$$DB = \underline{\hspace{1cm}}$$

$$m \angle ABC =$$

$$m \angle BCD =$$

$$m\angle AEB =$$

$$m\angle DEC = \underline{\hspace{1cm}}$$

True or False

Every square is a rectangle and a rhombus.

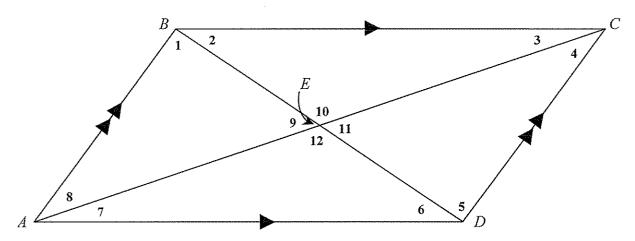
Every rectangle is a square.

Every parallelogram is a square.____

A square has 4 congruent sides.____

A square is always a parallelogram.
A square a parallelogram that always has four congruent angles
In a square the diagonals are congruent
In a square the diagonals bisect each other
In a square apposite anales are not congruent

The second secon


Geometry

NAME:

WORKSHEET: Parallelogram Properties

PERIOD: _____ DATE: ____

Parallelograms – Using Properties

Complete each of the following:

1)
$$m \angle 1 = m \angle$$

$$) \qquad m \angle 7 = m \angle \underline{\hspace{1cm}}$$

$$m \angle 1 = m \angle$$
 2) $m \angle 7 = m \angle$ 3) $m \angle ABC = m \angle$

4)
$$m \angle BCD = m \angle$$
 _____ 5) $m \angle 9 = m \angle$ _____ 6) $mBE = m$ _____

$$m \angle 9 = m \angle$$

$$6) \qquad mBE = m \underline{\hspace{1cm}}$$

7)
$$mAB = m$$

8)
$$\triangle ABD \cong \Delta$$

7)
$$mAB = m$$
 8) $\Delta ABD \cong \Delta$ 9) $\Delta CAB \cong \Delta$

10)
$$2 \cdot mBE = m$$
 11) $mAD = m$ 12) $mAE = m$

11)
$$mAD = m$$

$$12) \quad mAE = m \underline{\hspace{1cm}}$$

13) $\angle BAD$ is supplementary with \angle and also with \angle .

IF ABCD is a rectangle, then:

14)
$$m \angle ABC = \underline{\hspace{1cm}}$$

15)
$$mAC = m$$

17)
$$m\angle 2 = m\angle \underline{\hspace{1cm}} = m\angle \underline{\hspace{1cm}} = m\angle \underline{\hspace{1cm}}$$
 18) The diagonals form ____ isosceles Δ 's

IF *ABCD* is a *rhombus*, then:

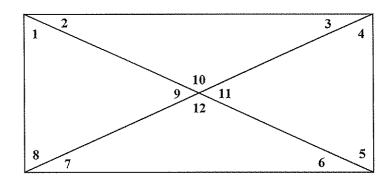
19)
$$m \angle 10 =$$
_____ ° 20) $m \angle 2 + m \angle 3 =$ ____ ° 21) mAB _____ mBC

21)
$$mAB \underline{\hspace{1cm}} mBC$$

22)
$$m \angle 8 = m \angle \underline{\hspace{1cm}} = m \angle \underline{\hspace{1cm}} = m \angle \underline{\hspace{1cm}}$$

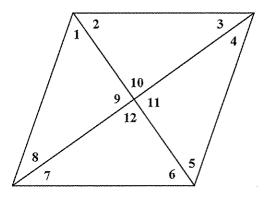
IF *ABCD* is a *square*, then:

$$23) \quad mAC = m \underline{\hspace{1cm}}$$

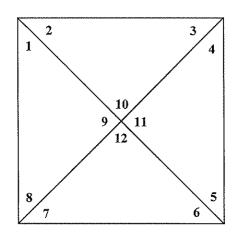

23)
$$mAC = m$$
 24) $m \angle 9 = m \angle 10 = m \angle 11 = m \angle 12 = ______$

25)
$$m \angle 1 = m \angle 2 = m \angle 3 = m \angle 4 = m \angle 5 = m \angle 6 = m \angle 7 = m \angle 8 =$$

Fill in all the numbered angles with the appropriate angle measures.


RECTANGLE...

$$m \angle 1 = 70^{\circ}$$



RHOMBUS...

$$m \angle 1 = 40^{\circ}$$

SQUARE...

