Unit 4: Modeling and Analyzing Exponential Functions

4.1 Create Equations that Describe Numbers or Relationships

1. A certain population of bacteria has an average growth rate of 2%. The formula for the growth of the bacteria's population is $A=P_{0} \cdot 1.02^{t}$, where P_{0} is the original population and t is the time in hours.

If you begin with 200 bacteria, about how many bacteria will there be after 100 hours?
A. 7
B. 272
C. 1,449
D. 20,000

Answer to Unit 4.1 Sample Item

1. C

4.2 Build a Function that Models a Relationship between Two Quantities

1. Which function represents this sequence?

\boldsymbol{n}	1	2	3	4	5	\ldots
a_{n}	6	18	54	162	486	\ldots

A. $f(n)=3^{n-1}$
B. $f(n)=6^{n-1}$
C. $f(n)=3\left(6^{n-1}\right)$
D. $f(n)=6\left(3^{n-1}\right)$
2. The points $(0,1),(1,5),(2,25)$, and $(3,125)$ are on the graph of a function. Which equation represents that function?
A. $f(x)=2^{x}$
B. $f(x)=3^{x}$
C. $f(x)=4^{x}$
D. $f(x)=5^{x}$

Answers to Unit 4.2 Sample Items

1. D
2. D

4.3 Build New Functions from Existing Functions

1. The function $f(x)$ is graphed below.

Which graph shows $f(x)+2$?
A.

B.

D.

2. Which function shows the function $f(x)=3^{x}$ being translated 5 units down?
A. $f(x)=3^{x}-5$
B. $f(x)=3^{(x+5)}$
C. $f(x)=3^{(x-5)}$
D. $f(x)=3^{x}+5$

Answers to Unit 4.3 Sample Items

1. B 2. A

4.4 Understand the Concept of a Function and Use Function Notation

1. Consider this pattern.

Which recursive formula represents the sequence that represents the patterm?
A. $a_{n}=(4)^{(n-1)}$
B. $a_{n}=(4)^{\left(a_{n}-1\right)}$
C. $a_{n}=\left(a_{n}\right)(4)^{[n-1]}$
D. $a_{n}=\left(a_{n}\right)^{4}$
2. Which function is modeled in this table?

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
1	1,000
2	800
3	640
4	512

A. $f(x)=1,000(0.80)^{x}$
B. $f(x)=1,000(0.20)^{x}$
C. $f(x)=1.000(0.80)^{x-1}$
D. $f(x)=1.000(0.20)^{x-1}$
3. Which explicit formula describes the pattern in this table?

d	c
0	1
1	6
2	36
3	216

A. $C=6 d$
B. $C=d+6$
C. $C=6^{d}$
D. $C=d^{6}$
4. If $f(12)=100(0.50)^{12}$, which expression gives $f(x)$?
A. $f(x)=0.50^{x}$
B. $f(x)=100^{x}$
C. $f(x)=100(x)^{12}$
D. $f(x)=100(0.50)^{x}$

Answers to Unit 4.4 Sample Items

1. A
2. C
3. C
4. D

4.5 Interpret Functions that Arise in Applications in Terms of Context

1. A population of squirrels doubles every year. Initially, there were 5 squirrels. A biologist studying the squirrels created a function to model their population growth: $P(t)=5\left(2^{t}\right)$, where t is the time in years. The graph of the function is shown.

Which values best describe the range of the population?
A. any real number
B. any whole number greater than 0
C. any whole number greater than 5
D. any whole number greater than or equal to 5
2. The function graphed on this coordinate grid shows $f(x)$, the height of a dropped ball, in feet, after its x th bounce.

On which bounce was the height of the ball 10 feet?
A. bounce 1
B. bounce 2
C. bounce 3
D. bounce 4

4.6 Analyze Functions Using Different Representations

1. Look at the graph.

Which equation represents this graph?
A. $y=2^{(x+1)}-2$
B. $y=2^{(x-1)}+2$
C. $y=2^{(x+2)}-1$
D. $y=2^{(x-2)}+1$

Answer to Unit 4.6 Sample Item

1. B
