Unit 5: Comparing and Contrasting Functions

5.1 Construct and Compare Linear, Quadratic, and Exponential Models and Solve Problems

1. Which scatter plot BEST represents a model of linear growth?

2. Which scatter plot BEST represents a model of exponential growth?

3. Which table represents an exponential function?

Α.	x	0	1	2	3	4
	у	5	6	7	8	9
в.	x	0	1	2	3	4
	у	22	44	66	88	110
C.	x	0	1	2	3	4
	у	5	13	21	29	37
D.	x	0	1	2	3	4
	у	3	9	27	81	243

4. A table of values is shown for f(x) and g(x).

x	f(x)	x	g(x)
0	0	0	-2
1	1	1	-1
2	4	2	1
3	9	3	5
4	16	4	13
5	25	5	29

Which statement compares the graphs of f(x) and g(x) over the interval [0, 5]?

- **A.** The graph of f(x) always exceeds the graph of g(x) over the interval [0, 5].
- **B.** The graph of g(x) always exceeds the graph of f(x) over the interval [0, 5].
- **C.** The graph of g(x) exceeds the graph of f(x) over the interval [0, 4], the graphs intersect at a point between 4 and 5, and then the graph of f(x) exceeds the graph of g(x).
- **D.** The graph of f(x) exceeds the graph of g(x) over the interval [0, 4], the graphs intersect at a point between 4 and 5, and then the graph of g(x) exceeds the graph of f(x).

5. Which statement is true about the graphs of exponential functions?

- A. The graphs of exponential functions never exceed the graphs of linear and quadratic functions.
- B. The graphs of exponential functions always exceed the graphs of linear and quadratic functions.
- C. The graphs of exponential functions eventually exceed the graphs of linear and quadratic functions.
- **D.** The graphs of exponential functions eventually exceed the graphs of linear functions but not quadratic functions.
- 6. Which statement BEST describes the comparison of the function values for f(x) and g(x)?

x	f(x)	g(x)
0	0	-10
1	2	-9
2	4	-6
3	6	-1
4	8	6

- **A.** The values of f(x) will always exceed the values of g(x).
- **B.** The values of g(x) will always exceed the values of f(x).
- **C.** The values of f(x) exceed the values of g(x) over the interval [0, 5].
- **D.** The values of g(x) begin to exceed the values of f(x) within the interval [4, 5].

Answers to Unit 5.1 Sample Items

1. B 2. A 3. D 4. D 5. C 6. D

5.2 Interpret Expressions for Functions in Terms of the Situation They Model

- 1. If the parent function is f(x) = mx + b, what is the value of the parameter *m* for the line passing through the points (-2, 7) and (4, 3)?
 - **A.** -9
 - **B.** $-\frac{3}{2}$
 - 2
 - **C.** −2
 - **D.** $-\frac{2}{3}$
- 2. Consider this function for cell duplication. The cells duplicate every minute.

 $f(x) = 75(2)^x$

- **A.** The 75 is the initial number of cells, and the 2 indicates that the number of cells doubles every minute.
- **B.** The 75 is the initial number of cells, and the 2 indicates that the number of cells increases by 2 every minute.
- **C.** The 75 is the number of cells at 1 minute, and the 2 indicates that the number of cells doubles every minute.
- D. The 75 is the number of cells at 1 minute, and the 2 indicates that the number of cells increases by 2 every minute.

Answers to Unit 5.2 Sample Items 1. D 2. A

5.3 Build New Functions from Existing Functions

- 1. What is the *y*-intercept of the graph of $h(x) = 2^x 4$?
 - **A.** (0, –4)
 - **B.** (0, –3)
 - **C.** (0, 1)
 - **D.** (0, 2)

2. What is the range of the graph of f(x) = -3(x - 4)?

- **A.** (-3, 4)
- **B.** (−3, ∞)
- **C.** (−∞, 4)
- **D.** (−∞, ∞)

Answers to Unit 5.3 Sample Items

1. B 2. D

5.4 Understand the Concept of a Function and Use Function Notation

1. Which function is modeled in this table?

x	f(x)
1	8
2	40
3	200
4	1,000

- **A.** f(x) = x + 7
- **B.** f(x) = 5x + 8
- **C.** $f(x) = (8)^x$
- **D.** $f(x) = \frac{8}{5} (5)^x$

2. If f(12) = 4(12) - 20, which function gives f(x)?

- **A.** $f(x) = 4x^2 20$ **B.** $f(x) = 4^x - 20$
- **C.** f(x) = 4x 20**D.** $f(x) = 4x^2 + 12x - 20$
- 3. Which function has a range of $f(x) \le \frac{3}{4}$?

A.
$$f(x) = \frac{3}{4}x + 5$$

B. $f(x) = -x^2 + \frac{3}{4}$
C. $f(x) = x^2 - \frac{3}{4}$
D. $f(x) = \frac{3}{4} - 5x$

Answers to Unit 5.4 Sample Items 1. D 2. C 3. B

5.5 Interpret Functions That Arise in Applications in Terms of the Context

1. A sample of 1,000 bacteria becomes infected with a virus. Each day, one-fourth of the bacteria sample dies due to the virus. A biologist studying the bacteria models the population of the bacteria with the function $P(t) = 1,000(0.75)^t$, where t is the time, in days.

What is the range of this function in this context?

- **A.** any real number such that $t \ge 0$
- **B.** any whole number such that $t \ge 0$
- **C.** any real number such that $0 \le P(t) \le 1,000$
- **D.** any whole number such that $0 < P(t) \le 1,000$
- 2. The graph shows the height, *y*, in meters, of a rocket above sea level in terms of the time, *t*, in seconds, since it was launched. The rocket landed at sea level.

What does the x-intercept represent in this situation?

- A. the height from which the rocket was launched
- B. the time it took the rocket to return to sea level
- C. the total distance the rocket flew while it was in flight
- D. the time it took the rocket to reach the highest point in its flight

Answers to Unit 5.5 Sample Items

1. D 2. B